
Research on Mining Maximum Frequent Itemsets Based on JFP-Growth
Algorithm

Wang Zerua, Wang Hongmeib
School of Computer Science and Engineering, Changchun University of Technology, Changchun, China

awangzeru1993@163.com, bwanghm@ccut.edu.cn

Keywords: frequent itemsets, FP-Growth algorithm, frequent 2-item set, pruning, two-dimensional
count table

Abstract: The FP-Growth algorithm is the most representative frequent item set mining algorithm.
An improved algorithm JFP-Growth algorithm is proposed for the shortcomings of FP-Growth
algorithm. When mining the maximum frequent itemsets, the JFP-Growth algorithm traverses the
support of the first 1-item set and the 2-item set of the first-time data set statistics, and uses the
frequent 2-item set as the pruning condition for full pruning and The merged nodes make there is no
non-potential candidate 3-item set in the JFP-tree, and the conditional pattern base is generated
without traversing the project header table during the mining process. Finally, the FP-Growth
algorithm and DMFIA algorithm are compared in the mining results, the number of nodes in
FP-tree and JFP-tree, mining efficiency, etc., which verifies the correctness and efficiency of the
JFP-Growth algorithm proposed in this paper.

1. Introduction
At present, data mining is to mine useful knowledge under a large amount of data. It is especially

important to find the relationship between knowledge and knowledge, and the core step is to mine
frequent itemsets. Many scholars have proposed many representative algorithms on how to mine
frequent itemsets, such as Aporior algorithm, FP-Growth algorithm, PARTITION algorithm and so
on. The FP-Growth algorithm is the most representative because it has an order of magnitude
improvement based on the Aprior algorithm. The FP-Growth algorithm is mainly composed of two
parts: (1) generating FP-tree, compressing the data set into a FP-tree; (2) generating frequent
itemsets, and recursively mining frequent itemsets by generating FP-trees. The FP-Growth
algorithm scans the data set of two passes to construct the FP-tree, finds the conditional pattern base
of each suffix pattern in the FP-tree according to the suffix pattern and the item header table, and
constructs the conditional FP-tree, and then recursively mines each condition. FP-tree generates all
frequent itemsets.

In recent years, many scholars have carried out a lot of research on the FP-Growth algorithm.
The literature [3] uses the Web Usage data to analyze the FP-Growth algorithm and the Apriori
algorithm, which shows the efficiency of the FP-Growth algorithm; the literature [4] will The three
classic algorithms FP-growth, COFI-tree and CT-PRO based on FP tree are compared and analyzed
to illustrate the shortcomings of FP-Growth algorithm. The literature [5] constructs FP-tree
projection and improves the FP tree in parallel. Memory overflow problem; literature [6] designed
computer cluster parallel FP-Growth algorithm to improve mining efficiency and solve memory
overflow problem, the literature [7] proposed load balancing parallel FP-Growth algorithm to
improve mining efficiency; literature [8] found frequent 2- The key pruning effect of the item set
and the last pruning theorem are proposed. When calculating the support degree, all the sibling
nodes with the common ancestor path are avoided. The literature [9] solves the data set based on the
storage disk and the incremental FP-Growth algorithm. The problem of re-running the FP-Growth
algorithm is changed; the support of the 1-item set and the 2-item set is recorded using the
two-dimensional vector, and the first traversal of the conditional pattern base when the conditional
FP-tree is generated is omitted, but this Methods will lose frequent prefixes. In [11], the

2019 2nd International Conference on Mechanical, Electronic and Engineering Technology (MEET 2019)

Published by CSP © 2019 the Authors 33

pre-feedback and inclusion relationship are pruned on the composite FP-tree, which solves the
problem that the FP-Growth algorithm scans the database twice and the memory consumption is
large. In recent years, with the development of parallelization processing, algorithms based on
parallelization platform have been proposed in the literature [12], literature [13], literature [14], and
literature [15], which provides a good direction for the next step.

The key to improving the performance of mining frequent itemsets is: (1) avoiding the
generation of a large number of candidate sets; (2) pruning the infrequent itemsets. The FP-Growth
algorithm itself has an algorithm to avoid generating a large number of candidate sets. Therefore, in
this paper, the problem of pruning the infrequent itemsets is proposed in the establishment of
FP-tree for pruning, in order to improve efficiency and generate FP-trees. The conditional pattern
base does not have to read the project header table in turn. Finally, the correctness and efficiency of
the algorithm are verified by comparing with the existing maximum frequent item set mining
algorithm DFP-tree and DMFIA in the data set Mushroom.

Related theory
Definition 1 data set, transaction, item set, frequent item set
As shown in Table 1, a transaction data set T, where ti represents each thing, and the elements

contained in each thing are called item sets. The number of times the item set is included in the data
set T is called support, and is denoted as sup(X). Let the minimum support be min_sup. If
sup(X)≥min_sup, then the item set X is a frequent item set.

Table 1 Data set T

Affairs Items Affairs Items
t1 A,B,C,D,E,F t6 B,D,E,G
t2 A,B,D t7 A,C,E,G
t3 B,D,F t8 A,F
t4 C,D t9 A,C,D
t5 A,B,D,E t10 A,D,E

Pruning theorem1 if the item set X={x1,...,xk} is frequent, X∈∀α ,Then α must be frequent. On
the contrary, if α is infrequent, the item set X must be infrequent.

Pruning theorem 2 If the itemset X={x1,...,xk} is frequent, βαβα ≠∧∈∧∈∀ XX ,The 2-item
set {α, β} must be frequent. on the contrary, βαβα ≠∧∈∧∈∃ XX ,If the 2-item set {α, β} is
infrequent, the item set X must be infrequent.

Corollary 1 sets the itemset {α, β} and {γ} to be frequent. If {α, γ} is infrequent or {β, γ} is
infrequent, the itemset {α, β, γ} must be infrequent.

Corollary 2 If the itemsets {α, β, γ} are infrequent, all itemsets prefixed by {α, β, γ} must be
infrequent.

Definition 2 A tree structure that satisfies the following characteristics is called a
Frequent-pattent growth tree (FP-tree):

1) The root node of the tree is "null" and its identifier is [‘null’: support];
2) Except that the root node assumes that other nodes are frequent 1-item sets, the identifier is

[1-item set: support]
3) The project header table is sorted by the frequent 1-item set in descending order according to

the support count, and its identifier is [1-item set: support: link pointer]

2. Improve the focus
Establishing FP-trees
In the traditional FP-Growth algorithm, the process of establishing FP-tree does not involve

branching, so that the number of each element is counted in the mining process. When the
established tree is relatively large, it will affect the mining efficiency. . The pseudo-code of the
branching process algorithm is described as follows:

34

1) The function Gen(T) converts the data set T into a two-dimensional count table.
Algorithm: Gen(T)
Input: data set T
Output: two-dimensional count table D, the complete set of pruned items I'

for each t∈T
 for(i = 0; i < |t|; i++)
 for(j = i; j < |t|; j++)

 D[ti][tj]++;
 for(i = 0; i < |t|; i++)
 if (D[ti][ti] >= min_sup) {
 add(ti, 1-item);
 if
 insert(ti, I'); }

2) The function CreateTree(T,min_sup, I') generates a pruned JFP-tree according to the rule that
proposes to establish an FP-tree.

Algorithm: CreateTree(T,min_sup, I')
Input: two-dimensional count table T, minimum support min_sup, complete set of pruned items

I'
Output: FP-tree after pruning

for each t∈T {
t'=sort(t, I');

for(i = 0; i < |t'|; i++)
for(j = i + 1; j < |t'| - 1; j++)
if (D[ti][tj] >= min_sup)
for (k = j + 1; j < |t'|; k++)

if(D[ti][tk]>=min_sup AND D[tj][tk]>=min_sup)
while (D[tk-1][tk]<min_sup)

tk-1= tk-1.parent;
tk-1=tk.parent;

tk.count++;
 }

For example, taking the data set T of Table 1 as an example, a two-dimensional count table and
an FP-tree are established, and then the branching comparison is performed by the branching
algorithm.

1) The first pass scan data set of the FP-Growth algorithm only calculates the support of the
1-item set. Considering the time cost of scanning the data set, the FP-Growth algorithm scans the
data set to count all 1-item sets and 2 - The support of the item set. For the data set T shown in
Table 1, the support for scanning the data set calculation 1-item set and 2-item set is shown in Table
2.

Table 2 Support Count for 1-item Set and 2-item Set

ite

A B C D E F G
A 7 3 3 5 4 2 1
B 5 1 5 3 2 1
C 4 3 2 1 1
D 8 4 2 1
E 5 1 2
F 3 0
G 2

2) The FP-Growth algorithm deletes all infrequent patterns according to the pruning theorem 1.
The pruning FP-Growth algorithm deletes frequent patterns that do not necessarily produce frequent
2-item sets according to the pruning theorem 2. For the data set T shown in Table 1, according to

sup)min_]][[D1][sign(<∧¬∃∧= jii ttjt

35

the statistical result of Table 2, let min_sup=3, delete the item G (infrequent mode) according to the
pruning theorem 1, and delete the item F according to the pruning theorem 2 (all contain F The
2-item set is infrequent), and the remaining frequent patterns are arranged in non-ascending order of
support, resulting in I'={D, A, B, E, C}.

3) The FP-Growth algorithm does not consider the pruning effect of the 2-item set on FP-Tree.
Because the pruning is not sufficient, the scale cannot be controlled when the FP-Tree is established,
and the subsequent traversal FP-Tree and the construction condition FP are added. The cost of -Tree.
Since the pruning FP-Growth algorithm obtains all the frequent 2-item sets after the first scan of the
data set, only the frequent k-item set (k ≥ 2) needs to be mined for the second scan of the data set.

4) According to the inference 1 of the pruning theorem 2, when constructing the pruning FP-tree,
all the items corresponding to the non-potential frequent 3-item set are subtracted. For example,
when pruning FP-tree is constructed for things t1={D, A, B, E, C}, for item C, since the 2-item set
{B, C} is infrequent, the item {C} is directly subtracted. As shown in Figure 1:

5) Combine all the things in Table 2 according to the branch reduction strategy, and finally get

the FP-tree comparison before and after the branching as shown in Figure2.

Figure 2 FP-tree comparison before and after branching

Figure 2(a) FP-tree constructed by FP-Growth

null

D:8 A:2

A:5 B:2 C:1

B:3 E:1 C:1

E:2

C:1

E:1

C:1 F:1

F:1

E:1

F:1

null

D:8

A:5

A:2

E:2

C:1 E:1 B:3

B:2

E:1

E:1

Figure 2(b) JFP-tree after branching

C:1

D:1

null

A:1

B:1

E:1

C:1

F:1

D:1

null

A:1

B:1

E:1

Figure1 t1 before and after the branch

36

It can be seen from the above process that the spatial complexity of the improved algorithm will
increase L(n2) on the basis of the original, but the pruning time complexity of the FP-Tree after the
two-dimensional table is established is O(1). Comparing FP-tree and FP-tree after branching, it can
be clearly seen that the F term does not appear in the node when the FP-tree is established, because
the F element and the elements in the tree cannot form a frequent 2-item set because According to
the subtraction theorem 1, the branch can be directly reduced. Then, when other items of things are
inserted into the FP-tree, and then subtracted according to the subtraction theorem 2, the FP-tree
merge item can be reduced, thereby reducing the size of the tree and generating unnecessary
frequent itemsets.

3. Analysis of experimental results
In order to verify the correctness and effectiveness of the algorithm, in the ubuntu16.04.3

operating system, clocked at 2.5GHz, memory 4G, the following three experiments were carried out
on the data set using Python language.

Experiment 1: Verify the correctness of the algorithm under the data set mushroom. The
experimental results are shown in Table 3.

It can be seen from Table 3 that the maximum frequent itemsets mined by the branching
algorithm in the data set mushroom are completely consistent with the DFMIA algorithm and the
DFP algorithm, which fully demonstrates the correctness of the algorithm.

Table 3 mining results in the data set mushroom

Min_sup
Maximum number of

frequent itemsets
Total number of frequent

itemsets
JFP DFMIA DFP JFP DFMIA DFP

0.02 18 18 18 4 4 4
0.04 17 17 17 6 6 6
0.08 16 16 16 4 4 4
0.1 16 16 16 4 4 4
0.2 15 15 15 1 1 1

Experiment 2: In the dataset mushroom, the comparison of the number of nodes comparing
FP-tre and JFP-tree under different support thresholds is shown in Table 4:

Table 4 Comparison of the number of nodes in the data set mushroom

Min_sup Number of nodes
FP-tree JFP-tree

0.08 391291 273904
0.1 351898 246329
0.15 69564 48695
0.2 51754 36228
0.25 4821 3375

It can be seen from Table 4 that the number of nodes of the JFP-tree is smaller than the number
of FP-trees, because the process of establishing the JFP-tree is accompanied by the reduction of the
redundant items, and the branching effect is obvious.

Experiment 3: In the dataset T10I4D100K and Mushroom, the effect of data size on the
algorithm efficiency under the same support threshold is investigated. The experimental results are
shown in Figure 3 and Figure 4.

It can be seen from Fig. 3 that the JFP algorithm has a significant improvement in mining
efficiency as the support degree decreases. This is because the pruning strategy and the bottom-up
of the project header are not traversed as the support degree decreases. The greater the impact on
the mining algorithm, the higher the efficiency of the algorithm.

37

0
5

10
15
20
25
30

0.3 0.25 0.2 0.15 0.1

r
u
n
 t
i
m
e
s
/
s

support%

DMFIA
DFt
JFt

Figure 3 Comparison of running time on the data set Mushroom

4. Summary
This paper analyzes the advantages and disadvantages of the FP-Growth algorithm, and proposes

an improved algorithm while inheriting its advantages. A two-dimensional count table is generated
when traversing the first pass database, thereby generating a 1-item set and a 2-item set, and
performing partial subtraction while generating. When the tree is built, the frequent 2-item set is
used as the pruning basis, and the process of building the tree is accompanied by the process of
branching, thereby improving the operating efficiency of the algorithm. And the problem of
repeating the same path is repeated when the conditional pattern is generated, and the recursive
backtracking method is proposed to solve the problem of repeated traversal. Although the space
consumption is increased when JFP-tree is established, in the subsequent mining process, the
efficiency improvement is very obvious, and the space spent is worthwhile. Finally, through the
mining experiments on T10I4D100K and Mushroom data, comparing the classic DFMIA, DFP
algorithm and improved algorithm proves that the improved algorithm has advantages when it is
strict for large data sets or mining conditions.

References
[1] R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules [J]. In:Proceedings of
the 20th Intemational Conference on Very Large Data Bases, Santiago, Chile, 1994, 487-499
[2] Singh AK, Kumar A, Maurya A K. An empirical analysis and comparison of apriori and
FP-growth algorithm for frequent pattern mining [C]//International Conference on Advanced
Communication Control and Computing Technologies. IEEE, 2015: 1599- 1602.
[3] Gupta B, Garg D. FP-tree based algorithms analysis: FP-Growth, COFI-Tree and CT-PRO [J].
International Journal on Computer Science and Engineering, 2011, 3(7): 2691-2699
[4] Zeng Y, Yin S, Liu J, et al. Research of improved FP-Growth algorithm in association rules
mining [J]. Scientific Programming, 2015,(2015-3-15), 2015, 2015:6.
[5] Chen M, Gao X D, Li H F. An efficient parallel FP-Growth algorithm [C]// International
Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery. IEEE,
2009:283-286.
[6] hou L, Zhong Z, Chang J, et al. Balanced parallel FP-Growth with MapReduce [C]//
Information Computing and Telecommunications. 2011:243 - 246.
[7] Wang Hongmei, Frequent Itemsets Mining Algorithm Based on Sorting Tree[J].Journal of Jilin
University(Engineering Science Edition)
[8] Shen Yan, Zhu Yuquan, Liu Chunhua. Incremental FP-Growth Algorithm Based on Disk Item 1
Item Count Counting [J]. Journal of Computer Research and Development, 2015, 52(3): 569-578
[9] Wu Qian, Luo Jianxu. Improved search algorithm for compressed FP-Tree[J]. Computer

38

Engineering and Design, 2015, 36(07): 1771- 1777
[10] WANG Jianming, YUAN Wei. Improvement of FP-Growth Algorithm Based on Node Table
[J]. Computer Engineering and Design, 2018, 39(01): 140-145.
[11] Liu Huihui, Zhang Zuping, Long Zhe. Spark-based FP-Growth companion vehicle discovery
and application [J]. Computer Engineering and Applications, 2018, 54(08): 7-13+35
[12] Shao Liang, He Xingzhou, Shang Junna. FP-Growth Big Data Frequent Itemsets Mining
Algorithm Based on Spark Framework [J/OL]. Computer Application Research,
2018(10):1-6[2018-05-08].
[13] Zhai Xiangyang, Zhang Ling. Parallel improvement algorithm of FP-Growth association rules
based on Hadoop[J].Application Research of Computers,2018,35(01):109-112
[14] Ma Yuekun, Liu Pengfei, Zhang Zhenyou et al. Improved FP-Growth algorithm and its
distributed parallel implementation[J].Journal of Harbin University of Science and Technology,
2016,21(02):20-27
[15] Jiao Runhai, Zhang Qian, Chen Chao. The maximum frequent item set mining algorithm based
on Spark improvement [J]. Computer Engineering and Design, 2017, 38(07): 1839-1843.

39

